(4x^2+3x-2)=(-5x^2-4x-1)

Simple and best practice solution for (4x^2+3x-2)=(-5x^2-4x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4x^2+3x-2)=(-5x^2-4x-1) equation:



(4x^2+3x-2)=(-5x^2-4x-1)
We move all terms to the left:
(4x^2+3x-2)-((-5x^2-4x-1))=0
We get rid of parentheses
-((-5x^2-4x-1))+4x^2+3x-2=0
We calculate terms in parentheses: -((-5x^2-4x-1)), so:
(-5x^2-4x-1)
We get rid of parentheses
-5x^2-4x-1
Back to the equation:
-(-5x^2-4x-1)
We add all the numbers together, and all the variables
4x^2-(-5x^2-4x-1)+3x-2=0
We get rid of parentheses
4x^2+5x^2+4x+3x+1-2=0
We add all the numbers together, and all the variables
9x^2+7x-1=0
a = 9; b = 7; c = -1;
Δ = b2-4ac
Δ = 72-4·9·(-1)
Δ = 85
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{85}}{2*9}=\frac{-7-\sqrt{85}}{18} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{85}}{2*9}=\frac{-7+\sqrt{85}}{18} $

See similar equations:

| 4x-1=5-3x | | v/3≤=2 | | (x-180)+(x-180)+90=180 | | 10x+160=204-9x | | j−–303=991 | | n+296=809 | | 981=f+442 | | p8=3 | | 545=g-457 | | 28v=-280 | | 0.75=x60 | | x*0.012=6000 | | m-699=-171 | | h+18=96 | | 1,5x-1,5=x+4 | | 1256=3.14.r^225 | | 1256=3.14.r^2.25 | | 8+z/3=1 | | 23d+35=449 | | 564d+d-342d=1115 | | 51d-45d=144 | | x+14=13x | | 5d+16d=189 | | 5x•2x=12 | | (25364-h)-2468=18191 | | 736+(g-123)=938 | | 356-(f-23)=243 | | 205=-5(-6p-5) | | 34+(e-44)=40 | | 30+5c=100 | | 6.2^b=192 | | 7x^2-112=0/ |

Equations solver categories